In the full blood examination the greatest numerical difference between children and adults is seen in the white cell count and differential. The white cell count is significantly higher in children of all ages, until mid-adolescence where it approximates adult counts.
Neutrophils
A high neutrophil count is commonly seen, particularly in neonates. The neutrophil count may be up to 14 x 109/L in a normal neonate.1 These 'normal' differences must be considered, for example in the diagnosis of bacterial infection. Other considerations are the potential response of the child to sepsis (very sick children may have neutropenia) and the effects of concomitant therapies such as steroids in croup or asthma. Features such as neutrophil vacuolation, toxic granulation or left shift with increased band forms are important determinants in the interpretation of neutrophil counts in children.
Lymphocytes
Compared to adults, a relative lymphocytosis is common in normal children. Lymphocyte counts up to 11 x 109/L are normal in children under twelve months and elevated counts persist until mid-adolescence.1 Results that may suggest lymphoproliferative disorders in adult patients, are usually either normal, or reflect common clinical and sub-clinical viral infections in children. Less commonly understood is the fact that morphologically normal lymphocytes in young infants often appear atypical, or even blast-like. Experience with paediatric blood films is required to avoid the unnecessary suggestion of leukaemia in many children, or the over diagnosis of specific viral infections associated with atypical lymphocytes.
Erythrocytes and haemoglobin
Red cell parameters vary significantly between the various age ranges. Relative polycythaemia is normal in the early days of life in both the term and premature newborn. The normal haemoglobin concentration ranges from 13.5 g/dL to 22.0 g/dL in the first weeks of life. This occurs in response to high fetal erythropoietin levels stimulated by the relative hypoxia experienced in utero.
The haemoglobin concentration in normal infants declines after birth to reach the physiological nadir at approximately eight weeks of age (normal range 9.0–14.0 g/dL). Adverse neonatal events, pre-maturity and haemolysis (due, for example, to maternal-fetal ABO incompatibility) may impact significantly on the rate and extent of this decline. The causes of the decline include accelerated red cell loss around the time of delivery, reduced survival of neonatal red cells (approximately 90 days v. 120 days) and erythropoietin deficiency as a result of negative feedback from increased oxygenation after the normal neonatal circulation is established. The fall in haemoglobin reactivates erythropoietin production, and the normal feedback mechanism that persists for the remainder of life is established.2
Red cell size follows a similar pattern to the haemoglobin concentration. Fetal red blood cells are macrocytic relative to adults, with the normal range of mean cell volume (MCV) at birth 100–120 fl. This reduces to 85–110 fl by one month and 70–90 fl by six months, before increasing again from early adolescence to reach normal adult values (80–97 fl) by late adolescence.2 The initial reduction in MCV occurs as the macrocytic fetal red cells are replaced during the first months of life.
Deviations in red cell size may indicate significant disease in children. Macrocytosis is commonly due to hepatic dysfunction, anticonvulsant therapy, hypothyroidism or B12/folate deficiency, and is an early marker of significant bone marrow disorders such as aplastic anaemia. A reduced MCV suggests conditions such as iron deficiency or a thalassaemia syndrome. While iron studies and haemoglobinopathy screening are warranted in adults with an MCV in the high 70s fl, this result is normal for the majority of children through the years of mid-childhood. In the absence of prematurity or substantial blood loss, microcytosis in the first six months of life almost always indicates an a-thalassaemia carrier. Normal fetal iron stores are sufficient during this time, irrespective of diet, and α-thalassaemia carriers do not develop microcytosis until after haemoglobin chain switching (from fetal to adult haemoglobin) occurs at around six months.
